Two Methods for Hierarchy Learning in Reinforcement Environments

نویسنده

  • Mark Ring
چکیده

This paper describes two methods for hierarchically organizing temporal behaviors. The rst is more intuitive: grouping together common sequences of events into single units so that they may be treated as individual behaviors. This system immediately encounters problems, however, because the units are binary , meaning the behaviors must execute completely or not at all, and this hinders the construction of good training algorithms. The system also runs into diiculty when more than one unit is (or should be) active at the same time. The second system is a hierarchy of transition values. This hierarchy dynamically mod-iies the values that specify the degree to which one unit should follow another. These values are continuous, allowing the use of gradient descent during learning. Furthermore, many units are active at the same time as part of the system's normal functionings.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Dynamic Obstacle Avoidance by Distributed Algorithm based on Reinforcement Learning (RESEARCH NOTE)

In this paper we focus on the application of reinforcement learning to obstacle avoidance in dynamic Environments in wireless sensor networks. A distributed algorithm based on reinforcement learning is developed for sensor networks to guide mobile robot through the dynamic obstacles. The sensor network models the danger of the area under coverage as obstacles, and has the property of adoption o...

متن کامل

Hierarchical Reinforcement Learning for Spoken Dialogue Systems

This thesis focuses on the problem of scalable optimization of dialogue behaviour in speech-based conversational systems using reinforcement learning. Most previous investigations in dialogue strategy learning have proposed flat reinforcement learning methods, which are more suitable for small-scale spoken dialogue systems. This research formulates the problem in terms of Semi-Markov Decision P...

متن کامل

Hierarchical Functional Concepts for Knowledge Transfer among Reinforcement Learning Agents

This article introduces the notions of functional space and concept as a way of knowledge representation and abstraction for Reinforcement Learning agents. These definitions are used as a tool of knowledge transfer among agents. The agents are assumed to be heterogeneous; they have different state spaces but share a same dynamic, reward and action space. In other words, the agents are assumed t...

متن کامل

Low-Area/Low-Power CMOS Op-Amps Design Based on Total Optimality Index Using Reinforcement Learning Approach

This paper presents the application of reinforcement learning in automatic analog IC design. In this work, the Multi-Objective approach by Learning Automata is evaluated for accommodating required functionalities and performance specifications considering optimal minimizing of MOSFETs area and power consumption for two famous CMOS op-amps. The results show the ability of the proposed method to ...

متن کامل

Ethological Concepts In Hierarchical Reinforcement Learning And Control Of Intelligent Agents

This paper integrates rigorous methods of reinforcement learning (RL) and control engineering with a behavioral (ethology) approach to the agent technology. The main outcome is a hybrid architecture for intelligent autonomous agents targeted to the Artificial Life like environments. The architecture adopts several biology concepts and shows that they can provide robust solutions to some areas. ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 1993